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Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition
associated with intense pelvic pain and bladder storage symptoms. Since
diagnosis is difficult, prevalence estimates vary with the methodology used.
There is also a lack of proven imaging tools and biomarkers to assist in
differentiation of IC/BPS from other urinary disorders (overactive bladder,
vulvodynia, endometriosis, and prostatitis). Current uncertainty regarding the
etiology and pathology of IC/BPS ultimately impacts its timely and successful
treatment, as well as hampers future drug development. This review will cover
recent developments in imaging methods, such as magnetic resonance
imaging, that advance the understanding of IC/BPS and guide drug
development.
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Introduction
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debili-
tating pelvic pain condition associated with bladder storage 
symptoms. The International Continence Society (ICS) and 
the European Society for the Study of IC/BPS (ESSIC) define 
IC/BPS as a condition with chronic (>6 months) pelvic pain, 
pressure, or discomfort perceived to be related to the urinary  
bladder accompanied by at least one other urinary symptom like 
persistent urge to void or frequency with or without cystoscopic  
abnormalities. These hard-to-treat subjective symptoms often 
overlap with a host of other urinary disorders including urinary 
tract infection (UTI)1, chronic urethral syndrome, overactive 
bladder, hypersensitive bladder, vulvodynia, endometriosis in 
women, and prostatitis in men. The RAND Interstitial Cystitis 
Epidemiology survey estimated that 3 to 8 million women and 
1 to 4 million men in the United States may have symptoms  
consistent with the diagnosis of IC/BPS2.

The variability of definitions (ICS, American Urological Asso-
ciation, ESSIC) and the abundance of non-specific symptoms 
and comorbidities complicate the diagnosis and management of 
IC/BPS3–5. Currently, the diagnosis of IC/BPS is typically based 
on the physician’s subjective assessment and exclusion of other  
conditions with overlapping symptoms6, including UTI. Neverthe-
less, two distinct patient groups can be identified corresponding 
to patients with organic disease of the bladder wall7–9 and patients 
with painful hypersensitivity10, experiencing pain in the pelvic 
floor as well as other organs11,12. The ICS also recently updated 
the IC/BPS definition and proposed three distinct entities: pelvic 
hypersensitivity, IC/BPS, and IC/BPS with Hunner’s lesions2. 
But no objective criteria are available to differentiate patients  
with IC/BPS into separate entities as outlined by the updated the 
ICS’ definition.

Current uncertainty regarding the etiology and pathology of IC/
BPS ultimately impacts its treatment and hampers future drug 
development. Similar situations in other organs, where a disease 
exhibit overlapping symptoms, have been elucidated by applying 
imaging methods and biomarkers. Following sections will cover 
the current understanding of the pathophysiology of IC/BPS 
and the potential of different imaging techniques, particularly 
magnetic resonance imaging (MRI) of the bladder, pelvic floor  
muscles, and brain, in advancing the understanding of IC/BPS.

Current understanding of the pathology
Interstitial cystitis/bladder pain syndrome originating from 
the bladder
IC/BPS patients of this category8,9 are considered to have an 
organic disease of the bladder wall. Pathological examination of 
biopsy specimens from the bladder wall of such IC/BPS patients 
typically finds a higher incidence of mucosal hemorrhages 
(glomerulations) submucosal inflammation13 and a high density 
of mast cells14,15, which is associated with hyperexcitability16 of 
afferent fibers17. Cystoscopic detection of glomerulations in the 
bladder mucosa of IC/BPS patients is the defining characteristic  
of the ESSIC type 2C classification, while the detection of  
Hunner’s lesion (a denudation of urothelium) is a sign of  
classic type or ESSIC type 3C, more commonly referred to as  
Hunner-type IC/BPS. Hunner-type IC/BPS is seen in 5–10% of 

cases and the analysis of their bladder wall biopsy is generally 
associated with high expression of T and B cell markers18, low  
expression of urothelial markers, high density of mast cells, focal 
 lymphoid aggregates, overexpression of IL-6, IL-10, IL-17A, and  
inducible NOS (iNOS) mRNA14. Analysis of urine specimens 
found higher concentration of immunoglobulin and inflamma-
tory mediators. Our current understanding is that most IC/BPS 
patients in the population do not present with Hunner’s lesions 
and therefore are classed as having non-Hunner-type IC/BPS19. 
To date, bladder wall biopsy is the only available method to  
detect mast cells20 and molecular signatures of chronic inflam-
mation in the bladder wall, but the method is limited by inva-
siveness and potential complications. Different fixation/staining 
techniques for mast cells21 also add to the confusion. Therefore, 
there is a need for a non-invasive imaging method to identify  
patients with organic disease of the bladder wall.

Contribution of bladder permeability and interstitial cystitis/
bladder pain syndrome
Multiple lines of evidence now support a role for increased 
bladder permeability in IC/BPS patients with organic disease 
of the bladder wall22–24. Denudation of the glycosaminoglycan 
(GAG) layer located at the luminal surface of the bladder24,25 by  
protamine sulfate leads to increased bladder permeability, which 
can be ameliorated by long-term oral or intravesical administra-
tion of GAG substitutes. Past published studies used the serum  
uptake of intravesically instilled urea24 or radionuclide26 as 
an index of bladder permeability. However, serum uptake26 of 
instilled substances is subject to considerable inter-individual 
variability in the distended bladder wall thickness27 and the  
volume of systemic distribution. Large divergence in the pub-
lished findings24,26 can easily be explained by the differences in the 
molecular weight (60 versus 487 Da) of urea and the radionuclide  
used as a probe.

The contribution of bladder permeability to the pathophysiology 
of IC/BPS is also supported by the immunohistochemical and 
ultrastructural studies of biopsies taken from IC/BPS patients. 
Decreased expression of tight junction protein and adhesive 
junction proteins including E-cadherin and zonula occludens-1 
(ZO-1) as well as the differentiation marker uroplakin22,28 sup-
ports the role of bladder permeability in IC/BPS pathogenesis. 
Electron microscopy of the urothelium in the biopsies  
revealed the contribution of leaky tight junctions in IC/BPS23. 
Umbrella cells are pleomorphic in the apical layer of the urothe-
lium, and a decrease in the microplicae (ridges) in umbrella cell 
membranes was suggested to be pathognomonic for IC/BPS29. 
Furthermore, upregulation of the purinoceptor P2X3 and an 
increased release of adenosine triphosphate from the urothelium 
are also reported in IC/BPS patients30. However, biopsy-based 
studies are sensitive to site selection, which can lead to the appar-
ent variability in the morphological differences between the  
urothelium of IC/BPS patients and controls29,31,32.

Contribution of fibrosis in interstitial cystitis/bladder pain 
syndrome
Fibrosis, or tissue scarring, often results from the evolutionarily 
conserved process of wound healing to resolve chronic inflamma-
tion. Progressive fibrotic changes in the bladder wall of IC/BPS 
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patients are characterized by excessive deposition of extra-
cellular matrix within the lamina propria and smooth muscle  
(Figure 1), generation of contractile fibroblasts (myofibroblasts), 
and decreased capillary density33,34. These histological changes 
are associated with the upregulation of collagen genes,  
collagen I, collagen III, fibronectin, and transforming growth fac-
tor-β1 (TGF-β1)35 and the downregulation of sonic hedgehog, 
WNT gene family, WNT2B, WNT5A, WNT10A, and WNT11 in 
the biopsy of non-Hunner-type IC/BPS patients33,36–40. Recent 
studies report the association of YKL-40 antigenic expression 
in detrusor mast cell granules and submucosal macrophages 
with detrusor fibrosis34 and of the fibrosis in ketamine-induced41  
IC/BPS with the activation of mammalian target of rapamycin 
(mTOR).

Changes in collagen gene expression in biopsy specimens rep-
resenting the mucosa and submucosa tissue layers of the blad-
der wall are consistent with the increased collagen staining in 
the intra- and inter-fascicular muscle tissue of IC/BPS patients15. 

Histological detection of fibrosis in the bladder wall is associ-
ated with increased passive tissue stiffness with stretch, reduced 
bladder compliance42, uninhibited detrusor contractions43, higher  
urinary frequency, and lower bladder capacity43. However, 
decreased bladder capacity7 is not a specific marker for IC/BPS 
patients, as both IC/BPS and overactive bladder patients44 exhibit 
decreased bladder capacity. Since fibrotic changes in non-Hunner- 
type IC and Hunner-type IC15,33,34,45 are significantly associ-
ated with the failure of standard treatment and the need for 
aggressive treatment options of steroids or hydrodistension  
with deep bladder biopsies, pain clinic, or surgery (e.g. urinary 
diversion and cystectomy) in extreme cases. Therefore, earlier 
detection of fibrotic changes can guide the pre-emptive addition  
of anti-fibrotic therapy for improved treatment outcomes.

Imaging techniques
Average thickness of human bladder wall is approximately  
3 mm and is composed of detrusor smooth muscle sand-
wiched between the mucosa and the adventitia46, which makes it  

Figure 1. Magnetic resonance imaging (MRI) is superior to computed tomography (CT) in bladder wall segmentation. Contrast-
enhanced T1-weighted MRI (Panel C) is superior to CT (Panel A) and unenhanced T1-weighted MRI (Panel B) for resolving the thickened 
bladder wall of the same female ulcerative interstitial cystitis/bladder pain syndrome (IC/BPS) patient as indicated by a red line drawn 
across the bladder wall. Representative T1-weighted fast low angle shot (FLASH) images acquired at the flip angle of 14° in orthogonal 
orientation before (Panel B) and after novel contrast mixture (NCM) instillation (Panel C) demonstrate that NCM-enhanced MRI can non-
invasively segment the bladder wall into a middle layer of bright signal intensity sandwiched between inner and outer layers of lower signal 
intensity. Fibrotic changes reported in the pathological results of the biopsy from the IC/BPS patient are visible as the bright middle layer 
from the diffusion of gadobutrol from NCM instilled in the lumen (hypointense circular region in Panel C). Fast acquisition of a single slice 
(5 mm thickness) over a single breath hold of approximately 17 seconds with imaging parameters of repetition time (TR)/echo time (TE) of 
5.5/2 milliseconds, field of view of 180×180 mm2, matrix of 256×256 and 10 averaging achieved in-plane resolution of 0.35 mm (after 2x 
interpolation) with minimal influence of motion and chemical shift artifacts (Panel B and C). Akin to CT (Panel A), T1-weighted MRI (Panel B) 
with similar imaging parameters as in Panel C could not resolve the bladder wall from the lumen in the absence of NCM owing to the relatively 
long intrinsic T1 relaxation time of >1 second for the bladder wall and of urine in the lumen. Although the bladder wall is demarcated clearly 
in pre-contrast T2-weighted image (Panel D and E) acquired at the TR/TE of 6.9/3.1 milliseconds, there is underestimation of bladder wall 
thickness, especially of the inner layer from 3.62 mm in panel C to 1.21 mm in Panel E. Instillation of gadobutrol in the absence of ferumoxytol 
enhances the T1 contrast of urine as well as the bladder wall, which precludes it from affording improved image contrast. This figure is an 
original image taken in our clinic for this publication.
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challenging to image by available planar and tomographic  
imaging techniques.

Planar imaging techniques
Cystoscopy. Cystoscopy is a planar imaging technique with a 
small field of view (FOV) for direct, real-time image guidance 
of the bladder wall. The ICS regards cystoscopy as the standard 
technique to identify IC/BPS patients with Hunner’s lesions47. 
Two-dimensional (2D) images generated via cystoscope show 
Hunner’s lesions on the luminal surface of bladder wall as 
either singular or multiple erythematous mucosal patches, with 
small vessels radiating toward a discrete central pale scar with  
fibrin or coagulum. Fissure and glomerulations (petechial  
hemorrhages) are visible during bladder emptying after hydro-
distention with cascade bleeding. The absence of Hunner’s 
lesions on cystoscopic examination classifies the patients as  
non-Hunner-type IC/BPS. The detection of Hunner’s lesions 
can guide appropriate surgical treatment of the lesion includ-
ing transurethral cauterization or fulguration and consideration 
of hydrodistension under general anesthesia in the absence of 
Hunner’s lesions48. However, small FOV of cystoscopy limits its 
sampling to small tissue volumes, and it can easily miss blad-
der wall changes that are morphologically indistinct from normal  
bladder wall49. Moreover, this gross morphological discrimination 
is unable to exclude patients with an abnormality in their pelvic  
floor.

Ultrasound. Available ultrasound techniques to image the blad-
der wall produce widely variable outcomes depending on the 
anatomical approach (translabial/transperineal and suprapubic), 
frequency, and other factors46. Detrusor smooth muscle is hyp-
oechogenic (dark), and the mucosa and the outer layer of the 
adventitia are hyperechogenic (bright). Since bladder wall and 
detrusor become thinner as the bladder fills, values of the bladder 
wall thickness (BWT) drop by about 1 mm for each increase in 
bladder volume distension by 50 mL. Therefore, most measure-
ments of BWT in the range of 3 mm to 6.5 mm are made with 
bladder filling volume of less than 50 mL using a 5–9 MHz probe. 
Since image resolution with ultrasound is only limited to 1 mm, 
a distended bladder wall may only be represented by around  
3 image pixels. Ultrasound is generally used to detect renal  
involvement, pelvic floor muscle mobility50, and thickening of  
the bladder wall in recurrent UTI51,52 and in IC/BPS53 patients.

Near-infrared imaging. The application of conventional fluores-
cent microscopy for imaging the bladder wall is limited owing 
to the issues pertaining to absorption by tissues, scattering, 
and auto-fluorescence of visible light54. Recently, fluorochromes 
emitting in the near-infrared (NIR) band were shown to emit 
light with tissue penetration approaching 10–15 cm55. Low back-
ground auto-fluorescence and minimal absorption by tissue  
components54 in the NIR band make it suitable for deep- 
tissue imaging56 (Figure 2). In a rodent study, the instillation of  
liposomes containing NIR dye allowed visualization of the 
instilled liposomes in anaesthetized mouse bladder wall57. NIR 
spectroscopy (NIRS) is a non-invasive, functional, transcutaneous 
optical technique that uses NIR light to monitor changes in the  
concentration of oxyhemoglobin and deoxyhemoglobin in the  

bladder wall. Thus, optical monitoring of bladder wall oxygena-
tion is feasible with NIRS58 to potentially delineate the contribution  
of ischemia to IC/BPS symptoms.

Tomographic imaging techniques
Tomographic imaging techniques are capable of three-dimen-
sional (3D) display and acquisition of multiple slices across  
multiple planes. Such a large image volume is enormously rich in 
potential information, but the complex instrumentation and inten-
sive image analysis preclude real-time feedback. The potential of 
tomographic image visualization and quantitative analysis in the  
diagnosis and treatment of IC/BPS remains unrealized.

X-ray computed tomography. Abdominal computed tomography 
(CT) is a tomographic imaging technique which was recently 
used to detect the treatment-associated decrease in bladder 
wall thickening of IC/BPS patients59, identify hidden lesions  
under scanned area, and exclude malignancies. However, CT 
exposes patients to high doses of ionizing radiation (X-ray) 
and lacks the sensitivity to detect the onset and progression 
of fibrosis. Figure 1 illustrates the relative contrast resolution 
(degree of difference between brightest and darkest component  
of an image) of the bladder wall with CT and MRI.

Magnetic resonance imaging. MRI is a safe imaging technique 
that does not rely on ionizing radiation for tomographic imag-
ing of visceral organs. MRI affords higher contrast and spatial 
resolution of soft tissue in multiplanar images60, which makes 
it one of the preferred imaging modalities in urology. MRI is  
especially superior to CT in reliably producing slices more suited 
to detect lesions in the dome and base of the bladder wall. MRI 
also allows diffusion imaging and dynamic contrast enhance-
ment in the bladder wall60. However, there is no reference  

Figure 2. Near infra-red imaging. Representative images for the 
rat pelvic area in visible light and in near infra-red (NIR) light after 
instillation of liposomes containing a trace amount of NIR dye. Deep 
tissue imaging of the bladder wall is possible, as light emitted from 
the bladder lumen in the NIR band encounters low background auto-
fluorescence and minimal absorption by tissue components. This 
figure is an original image taken in our clinic for this publication.
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signal for MRI corresponding to the standard reference signal  
of 0 Hounsfield units for the radio density of water in CT. So, 
MR image quality in terms of both image contrast (Figure 1)  
and spatial resolution is described by contrast resolution or  
contrast-detail measured by contrast–noise ratio (CNR)61.

Conventional MRI
Exquisite soft tissue contrast in conventional T

1
- and T

2
-weighted 

MRI arises principally from the differences in the intrinsic tis-
sue relaxation times T

1
 (spin–lattice relaxation time)62 and T

2
 

(spin–spin relaxation time)10,63,64. Variation in signal sensitivity 
(rise in CNR) is to highlight the differences in T

1
62 and T

2
63,64 for 

T
1
-weighted and T

2
-weighted images63,65 is commonly achieved by 

manipulating the acquisition parameters (e.g. flip angle [FA], echo 
time [TE], repetition time [TR], inversion time, etc.). Unenhanced  
T

1
-weighted MRI requires a TR of >4–5 times the T

1
 relaxa-

tion time of the target organ. Hence, a relatively long intrinsic T
1
 

relaxation time of >1 second for bladder wall and of >6 seconds 
for urine at magnetic field strength of 3 Tesla (T)62,66 requires 
a TR of >5 seconds, which prolongs the image acquisition  
(>5 minutes)67 and the resulting image quality of the thin human 
bladder wall68,69 becomes highly susceptible to artifacts from 
involuntary bowel and respiratory motion of the subject70.  
Moreover, multiple signal averages63 with prolonged image 
acquisition for T

1
-weighted MRI of the bladder wall can achieve  

in-plane resolution of >0.5 mm71,72.

We recently showed that the use of a short TR of 5.5 milli-
seconds increases the image resolution in T

1
-weighted MRI 

(Figure 1B), but the isointense signal in the bladder wall and  
urine62 makes it difficult to differentiate the thin human bladder 
wall from the urine. Though the human bladder wall is more dis-
tinguishable in T

2
-weighted MRI (Figure 1D)63,73, T

1
-weighted  

MRI67 is preferable for its higher signal-to-noise ratio (SNR) and 
accurate measurement of BWT69,73–75 for characterizing blad-
der disorders51. As shown in Figure 1, the thickness of the inner 
layer (urothelium) of the bladder wall is underestimated in T

2
-

weighted images75,76. The bladder wall appears as a thin layer of 
intermediate intensity on T

2
-weighted images and is likely to 

correspond to the thickness indicated by of the middle and outer 
layer on the contrast-enhanced T

1
-weighted image (Figure 1C)65.  

It appears that the highly intense signal of urine in unenhanced  
T

2
-weighted images submerges the signal from a portion of 

the urothelium layer, leading to BWT underestimation75. Since 
lesions in the bladder wall associated with IC/BPS are generally 
restricted to the urothelium, T

2
-weighted MRI can easily miss 

the important details for the pathological characterization of 
IC/BPS. T

2
-weighted MRI is also not suitable for staging the  

bladder cancer before invasion of muscular layer65.

Furthermore, the sandwich composition of the bladder wall’s 
histology can displace the respective MR signals in the read-
out direction to produce chemical shift mis-registration of the 
perivesical fat signal and exaggeration of motion artifacts66,77,78.  
Chemical shift artifact refers to the signal alterations that 
result from the 440 Hz differences in the resonant frequen-
cies of fat and water protons at 3T66,78. Therefore, variable 
shape, location, and histological composition of the bladder 

wall limits the utility of conventional MRI in the diagnosis and  
treatment of IC/BPS. Nevertheless, urinary bladder can be  
visualized by MRI in multiple cross-sectional orientations with  
parallel image series in cross-sectional imaging planes and inter-
sectional at different orientations. However, the information in 
2D image slices is non-continuous owing to slice gaps. Hence, 
improvements in bladder wall imaging call for enhancement 
of contrast and SNR and reduced susceptibility to artifacts79  
during image acquisition and 3D reconstruction.

Contrast-enhanced MRI
One of the traditional approaches to enhance T

1
 contrast of the 

human bladder wall is the intravenous injection of gadolinium-
based contrast agents (GBCAs). Entry of blood containing the 
injected GBCAs into the middle layer of the bladder wall can 
briefly differentiate it into three layers: a thin inner layer of low 
intensity, a middle layer of strong intensity, and a thick outer 
layer of intermediate intensity in post-contrast images65. How-
ever, subsequent entry of the GBCA excreted into urine within  
3 minutes of injection80,81, and subsequent continuous accumu-
lation in bladder ultimately reduces the contrast between the 
lumen and bladder wall69,73,82. Moreover, the T

2
 relaxation effect  

of GBCAs80,83 causes pseudolayering in the urine collected in 
the lumen73. To overcome the drawbacks associated with the 
intravenous administration of GBCAs, several groups have 
now tried intravesical administration of GBCAs in bladder  
cancer84, vesicoureteral reflux85, and IC/BPS. But the enhance-
ment of T

1
 contrast in the urine by the instilled GBCA analog  

gadolinium–diethylenetriaminepentaacetic acid prevents it 
from offering a good image contrast in the bladder wall69,84,86 
and accurately measuring the BWT. Likewise, instillation of 
superparamagnetic iron oxide (SPIO) nanoparticles87 has also 
been tried without much success to improve the contrast of the  
human bladder wall88.

Our group recently reported that novel contrast mixture 
(NCM) can improve the image contrast of the bladder wall in  
T

1
-weighted MRI of rat88 and human bladder61 (Figure 1C, Figure 3,  

and Figure 4). NCM is a homogenous mixture of gadobutrol 
(GBCA) diluted 1:250 and ferumoxytol (SPIO) diluted 1:104 
in sterile water for irrigation (Panel A). Gadobutrol (transparent 
liquid) with a molecular weight of 604.71 Da, whether injected  
intravenously or instilled into bladder, reaches the extracel-
lular space in the lamina propria to produce T

1
 contrast (sig-

nal increase). Meanwhile, the large molecular weight of 750 
kDa restricts the bladder wall diffusion of ferumoxytol (vial 
with brown-colored liquid) to primarily exert T

2
 contrast (signal 

decrease) in the lumen and produce a localized increase in proton 
dephasing of T

1
-weighted FLASH (fast low angle shot) MRI at a  

TR/TE of 5.5/2 milliseconds. T
1
-weighted FLASH images of 

the tubes containing gadobutrol or NCM in Figure 4 A–B illus-
trate that the presence of ferumoxytol (5 mM) in the NCM tube 
masks the gadobutrol-mediated signal enhancement, which is 
visible with an increase in FA from 6° (panel A) to 14° (panel B) 
in the right tube containing gadobutrol 4 mM alone. The concen-
tration of gadobutrol (4 mM) is the same in both tubes identified 
as NCM and gadobutrol. Likewise, the separation of gadobutrol 
away from NCM instilled in the lumen dramatically increases  
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the signal intensity in the bladder wall of ulcerative IC/BPS 
patients (Figure 4E–F) but not in the non-ulcerative IC/BPS patient 
(Figure 4C–D), which indicates that a greater physical separa-
tion of gadobutrol from ferumoxytol occurs from the diffusion 
of gadobutrol into the bladder wall away from the NCM instilled  
in the bladder lumen of ulcerative IC/BPS patients.

Post-contrast images of human bladder wall were acquired after 
50 mL NCM instillation to achieve artifact-free visualization 
of the bladder wall with an in-plane resolution of <0.5 mm. The 
use of a short TR of 5.5 milliseconds with 10 averages short-
ened the image acquisition from 5 minutes to a single breath 
hold of 17 seconds and reduced the susceptibility to motion  
artifacts. A higher number of pixels representing the bladder 
wall and high readout bandwidth of 574 Hz/pixel ensure that 
the mis-mapping of the water and fat signals is limited to a pixel  
(i.e. 0.7 pixels = 440 Hz/574 Hz)66,78. Contrast-enhanced MRI 
(CE-MRI) of the ulcerative IC/BPS patient after the instilla-
tion of NCM revealed segmentation into three layers of different 
signal intensity in post-contrast images taken at the FA of 14°, 
where the middle layer of bright signal intensity was sandwiched 
between the inner and outer layers of lower signal intensity. The  
constant TR of 5.5 milliseconds at different FAs achieves the 
stable steady-state conditions necessary for the signal inten-
sity measurement of the same slice at different FA to become a  
function of the T

1
 relaxation time (Figure 4G and 4H).

In a study published by another group, GBCA was instilled 
at the rate of 2–2.5 cc per second over a 5–10 minute period or 
a total volume of 600–800 mL86. In comparison, a standard vol-
ume of 50 mL for NCM instillation is likely to be more tolerable 
for a subset of severe IC/BPS patients with low bladder capac-
ity of 200–400 mL7,89. Bladder wall thinning of approximately 
0.41 mm measured after 50 mL instillation for NCM-enhanced  
T

1
-weighted MRI61 is consistent with the ultrasound measure-

ments of BWT distended to similar volumes46. It is known that 
overdistention of the bladder wall can provoke motion artifacts 
in sensitive patients and the consequent thinning of the blad-
der wall can also hinder the differentiation of tissue layers  
and the luminal texture90.

Pelvic magnetic resonance imaging as a tool to assess the con-
tribution of bladder permeability in interstitial cystitis/bladder 
pain syndrome
Instead of serum uptake, T

1
-weighted CE-MRI in IC/BPS patients 

relies on the penetration of an instilled GBCA into the blad-
der wall as a non-invasive measure of bladder permeability86,91,92. 
Towner et al. reported that instillation of GBCA bestowed 
greater skewness and kurtosis in the probability distribution for 
the bladder wall signal intensity86. It is worth stating here that 
the signal intensity measurement in MRI depends on several  
factors, including intrinsic properties of the tissue and the acqui-
sition parameters, receiver coil geometry, sensitivity, and sig-

Figure 3. Contrast-enhanced magnetic resonance imaging (MRI) relies on the diffusion of gadolinium into the bladder wall. Novel 
contrast mixture-enhanced MRI relies on the differences in the contrast mechanisms and molecular weight of two US Food and Drug 
Administration-approved agents (gadobutrol diluted 1:250 and ferumoxytol diluted 1:104) for increasing the contrast resolution of the bladder 
wall (Panel A). Gadobutrol, a transparent liquid, is a gadolinium-based contrast agent (GBCA) with a molecular weight of 604.71 Da that 
reaches the extracellular space in the lamina propria to shorten T1 (positive contrast) or produce higher signal intensity (Panel A and B). 
Meanwhile, the large molecular weight of 750 kDa for ferumoxytol (vial with brown-colored liquid) restricts its bladder wall diffusion, and it 
produces a localized increase in proton dephasing, which decreases the signal intensity (negative contrast) in T1-weighted images. Instillation 
of novel contrast mixture 50 mL can non-invasively segment the inner layer (urothelium) and the outer layer of adventitia (dark signal) from 
the bright signal in the middle layer composed of the lamina propria and detrusor smooth muscle (Panel C). Bladder wall histology in Panel C 
is shown for illustration and does not represent the pathological characterization of the interstitial cystitis/bladder pain syndrome (IC/BPS) 
patient shown in Panel B. This figure is an original image taken in our clinic for this publication.
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nal amplifier gains. These variables introduce a non-linearity 
into the signal intensity measurement and differences in hard-
ware used at different places preclude any direct compari-
sons of intensity values across patients or imaging centers.  
Moreover, hypointense signal intensity in the inner layer 
of the bladder wall (Figure 1C and Figure 3) after NCM  
instillation indicates that quantitative measurement of the blad-
der wall signal intensity following GBCA instillation is especially  
vulnerable to the MRI artifacts62,66,77,78.

Passive diffusion of gadobutrol into the bladder wall is pre-
sumed to create a downhill concentration gradient of GBCA 
with the highest concentration in the innermost layer. However, 
signal intensity in different tissue layers of the bladder wall does 

not show a similar downhill gradient owing to the T
2
 relaxa-

tion effect of GBCA at higher concentrations80,83, which reduces 
the relative signal intensity of the inner layer compared to the 
middle layer of the bladder wall. The T

2
 relaxation effect of the 

GBCA excreted in the urine is also known to cause pseudolayering  
in urine containing excreted GBCA accumulating in the blad-
der after intravenous injection of the GBCA80. Also, a role for 
an increased proton dephasing from localized perturbation of 
the magnetic field by ferumoxytol cannot be ruled out in the 
lowering of the signal intensity in the inner layer. Since signal 
intensity measurement in CE-MRI can introduce errors in blad-
der wall permeability measurement, the interpretation of the  
imaging data can be simplified by direct calculation of the pro-
ton density and spin relaxation times. Hence, acquisition T

1
 

Figure 4. Quantitative measurement of gadolinium diffusion. T1-weighted fast low angle shot (FLASH) images with constant repetition time 
(TR) of 5.5 milliseconds (ms) at flip angle (FA) of 6° (Panel A, C, and E) and 14° (Panel B, D, and E) demonstrate that gadobutrol-mediated 
signal enhancement (visible in the right tube containing gadobutrol 4 mM alone) is suppressed by the presence of ferumoxytol (5 mM) in the 
novel contrast mixture (NCM) tube, as the gadobutrol concentration of 4 mM is the same in both tubes (Panel A and B). T1-weighted FLASH 
images demonstrates that greater separation of gadobutrol into the bladder wall away from the NCM instilled in the bladder lumen occurs 
in ulcerative IC/BPS patients (Panel E and F) than in non-ulcerative interstitial cystitis/bladder pain syndrome (IC/BPS) patient (Panel C and 
D), which is evident from the dramatic increase in signal intensity in Panel F relative to Panel D at FA of 14°. Catheter used for instillation is 
shown by C in panel C–H. Constant TR of 5.5 ms at different FAs achieves the stable steady-state conditions necessary for the differences 
in signal intensity of the same slice to become a function of T1 relaxation time as indicated by the color panel in Panel H. Greater shortening 
of T1 relaxation time (blue color) in ulcerative IC/BPS patients is consistent with higher diffusion of gadobutrol into the expanded extracellular 
matrix of the thickened bladder wall of IC/BPS patients. This figure is an original image taken in our clinic for this publication.
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relaxation time can facilitate improved characterization of 
the bladder wall, enhance image tissue contrast, and provide 
a more direct link between the observed signal changes and 
pathological changes detected by bladder wall biopsy. Besides,  
quantitative relaxometry (quantitative measurement of T

1 
relaxa-

tion time) can facilitate the standardization of bladder wall  
imaging for longitudinal study on the same patient and multicenter 
studies.

In a small pilot study of six subjects, we used the differences in 
signal intensity at different FAs to calculate the T

1
 relaxation 

time, which is an intrinsic property of tissues. T
1
 graphi-

cally represents the first order time constant required for the  
z-component of net magnetization to reach (1-1/e) or about 63% 
of its maximum signal intensity93. A change in the longitudinal  
relaxation rate (1/T

1
) of the tissue is directly propor-

tional to the GBCA concentration in the tissue94. However, 
the acquisition of artifact-free, high-resolution imaging of  
human bladder wall is a prerequisite for mapping the T

1
 relaxa-

tion time and for deriving the bladder wall permeability data. 
Therefore, automatic acquisition of the pre-contrast and post-con-
trast pixel wise T

1
 maps obtained after NCM (Figure 4G and 4H) 

can be a robust measure of bladder wall permeability. The 
variable FAs95 method is a preferred alternative to the Look-
Locker method for quantitative measurement of bladder wall  
T

1
, as it does away with the inversion pulse and clinically infea-

sible times required to more fully characterize the recovery 
curves. The differences in signal intensity at different FAs in  
different layers of the bladder wall were transformed to a 
homogenous blue color indicating the shortening of the bladder 
wall T

1
 following diffusion of gadobutrol from instilled NCM  

(Figure 4).

Studies on the heart and liver have demonstrated that fibrotic 
changes96,97 increase the T

1 
relaxation time and therefore quan-

titative T
1
 measurement98 of the bladder wall is proposed as 

an objective and reproducible parameter for the non-invasive 
detection of diffuse histological changes such as edema and  
fibrosis without resorting to bladder wall biopsy. Indeed, the 
bright middle layer in the bladder wall (Figure 1C, Figure 3B, and  
Figure 4F) is consistent with the evidence of fibrosis noted in 
the bladder biopsy and bladder wall thickening noted in CT 
of the same IC/BPS patient. Therefore, quantitative measure-
ment of bladder wall T

1
 can become a non-invasive biomarker of  

diffuse tissue changes leading to increased bladder wall per-
meability, which can help the clinician to discriminate IC/BPS 
from other pelvic floor defects. In recent years, the use of T

1
  

mapping techniques has been simplified and can be readily  
integrated into clinical MRI examination.

Pelvic magnetic resonance imaging as a tool to assess the  
contribution of pelvic floor hypertonicity in interstitial cystitis/
bladder pain syndrome
The anatomies of pelvic structures99,100 are critical for the diag-
nosis of pelvic floor hypertonicity. The contribution of pelvic 
floor hypertonicity to pain in 15 female IC/BPS patients and  

age-matched controls was investigated with T
2
-weighted MRI 

without instilling or injecting any contrast agents. Increased pelvic 
floor hypertonicity in IC/BPS patients was linked to short-
ened levator muscles, wider posterior puborectalis angle, and 
decreased  puborectal distances. While the total urethral length  
and M line were similar in two cohorts, the H line was shorter 
and the vaginal cuff and bladder neck distances to the H line were 
longer in patients with IC/BPS. These observations need to be 
considered in light of the known age dependence in the displace-
ment of the bladder and vagina99 and as-yet-unknown contribu-
tion of neuronal factors, decrease in muscle strength/mass, or fat 
deposition. Pelvic magnetic resonance 3D reconstructed images 
can reveal the anatomical relationships of pelvic organs with  
each other101.

Brain magnetic resonance imaging as a tool to assess the  
contribution of central pain processing
In a multicenter study, high-resolution T

1
-weighted MRI11 and 

functional MRI (fMRI)12 of brain was used to detect altera-
tions in central pain processing of well-phenotyped IC/BPS 
patients. Compared to healthy controls, the pain, mood (anxiety),  
and urological symptoms of 33 IC/BPS patients were associated 
with a notably elevated volume of gray matter in a number of  
different brain regions. A separate study examined the 10-minute 
resting brain fMRI of 85 IC/BPS patients and 85 female healthy 
controls12 to detect blood oxygen level-dependent signal, 
which was then transformed to the frequency domain. Altered  
frequency distributions in viscerosensory (post insula), soma-
tosensory (postcentral gyrus), and motor regions (anterior  
paracentral lobule and medial and ventral supplementary motor 
areas) were detected in IC/BPS patients relative to controls.  
IC/BPS patients also showed increased functional connectivity of  
the anterior paracentral lobule and medial and ventral supplemen-
tary motor areas to the midbrain (red nucleus) and cerebellum. 
Patients who experienced pain during bladder filling had  
the highest level of increased functional connectivity.

Urine analysis of interstitial cystitis/bladder pain 
syndrome patients
Our group reported that IL-8 (CXCL-8) is elevated, along with 
other members of the CXC family of chemokines namely CXCL-
1 and CXCL-10, in the urine of Hunner-type IC/BPS patients47. 
Erickson et al. found a positive association between elevated lev-
els of CXCL-8 in the urine and bladder mast cell counts of IC/
BPS patients102. A subsequent study from her group reproduced 
the earlier reported elevation of CXCL-10 in Hunner-type IC/BPS 
patients39. Longitudinal analysis of the urine samples of IC/BPS  
patients at baseline and at follow-up further demonstrated the 
treatment-associated reduction in urinary chemokine levels fol-
lowing hydrodistension103 and sacral neuromodulation104 at 4 
and 24 weeks, respectively. A recent crowd-sourcing urine study 
confirmed the elevation of CXCL-1 and CXCL-8 in the urine of 
153 IC/BPS patients105. Nerve growth factor (NGF)106 is over-
expressed in IC/BPS patients, and a recent meta-analysis of sev-
eral studies found increased NGF levels in the urine of IC/BPS 
patients107. NGF overexpression in the bladder was linked to  
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the deposition of type I collagen in the extracellular matrix of 
rat bladder108. TGF-β1 is another signaling mediator shown to 
be responsible for fibrosis in rat bladder following exposure to  
ketamine109 or cyclophosphamide35.

Potential applications of imaging tools in interstitial 
cystitis/bladder pain syndrome
The identification of patients primarily afflicted with organic 
disease of the bladder wall7 and those with myofascial pain 
or disturbance in central pain processing can rationalize the 
clinical management of incipient IC/BPS. We envision that  
NCM-enhanced T

1
-weighted pelvic MRI can provide struc-

tural and functional imaging of the bladder wall to easily  
discriminate patients who have organic disease of the bladder wall 
from those who have pelvic floor hypertonicity. Only available  
current option of bladder wall biopsy for phenotyping IC/BPS 
patients with organic disease of the bladder wall, is invasive and  
riddled with potential complications, which makes it likely that 
such patients are under-represented in the numerous failed clini-
cal trials on anti-inflammatory110,111 or GAG replacement112,113  
therapies. Therefore, there is an unmet need for a non-invasive 
imaging method for assessing chronic inflammation in bladder 
wall IC/BPS, which can enable the selection of IC/BPS patients 
most likely to respond to anti-inflammatory therapies. IC/BPS 
patients with organic disease of the bladder wall are expected to 
demonstrate higher bladder wall permeability for GBCAs, and 
such patients will be good candidates for GAG replacement ther-
apy by pentosan polysulfate or other new intravesical treatments 
including liposomes, submucosal injection of steroids into the 
bladder wall114, or Vessilen® (a new formulation of 2% adelmid-
rol [the diethanolamide derivative of azelaic acid] + 0.1% sodium  
hyaluronate)115. On the other hand, IC/BPS patients who do 
not exhibit bladder permeability changes on MRI are more 
likely to benefit from therapies directed at pelvic floor or central  
disturbances.

Fibrotic changes (collagen deposition) in the bladder wall are a 
well-known outcome of progressive IC/BPS15,33,34,45, ketamine 
abuse41,116, and obstruction117,118. The inability to non-invasively 
measure fibrosis represents a major gap in the care and investi-
gation of IC/BPS and other voiding disorders. Large volumetric 
data available from MRI can allow reconstruction of the blad-
der wall and pelvic structures101. Hunner’s lesions and fibrotic 
changes in the bladder wall can be visualized using multiphase data  
sets acquired in a continuous fashion using novel free-breathing 
MRI sequence without predetermined temporal resolution, 
allowing for retrospective sparse reconstruction at flexible tem-
poral resolution119. Increased permeability of the bladder wall 
can also be confirmed by the penetration and accumulation 
of 2-deoxy-2-[fluorine-18] fluoro-D-glucose in the bladder 
wall using positron emission tomography integrated with CT  
(18F-FDG PET/CT). PET with 18F-FDG, an analogue of glucose, 
provides valuable functional information based on the increased 

glucose uptake in the inflamed sites in the bladder wall before 
morphological alterations occur. The combined acquisition of 
PET and CT has synergistic advantages over PET or CT alone,  
as the combined approach minimizes individual limitations 
of each technique. Imaging tools have the potential to replace 
the subjective impressions of patients in objectively quantify-
ing symptoms and the clinical response of new drugs. The weak 
correlation between symptom questionnaire scores and patient 
satisfaction is considered a potential bottleneck in the continued  
scientific progress and new drug development for IC/BPS.

Conclusions
Recent advances in MRI of the bladder wall and brain can  
transform our understanding and care of patients with IC/BPS. 
High-resolution T

1
-weighted MRI and fMRI can inform on the 

disturbances in central processing of chronic pelvic pain. CE-MRI 
of the bladder wall has the potential to objectively separate three 
distinct entities of IC/BPS: pelvic hypersensitivity, IC/BPS,  
and IC/BPS with Hunner’s lesions. Such objective classifica-
tion can enable proper patient selection for drugs targeting 
chronic inflammation in the bladder wall and reduce the reliance 
on subjective outcomes for predicting the efficacy and safety  
of novel therapeutic interventions.
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